Numeri pitagorici
I numeri pitagorici sono soluzioni intere (x, y, z) dell'equazione
x 2 + y 2 = z 2 ,
che è valido per i lati del triangolo.
Il programma calcola tutte le terzine senza un divisore, che non sono più grandi di un determinato numero.
Esempio:
Per x, y, z tra 100 e 400 otteniamo:
( 119|120|169 ) ( 104|153|185 ) ( 133|156|205 ) ( 105|208|233 ) ( 140|171|221 ) ( 115|252|277 ) ( 120|209|241 ) ( 161|240|289 ) ( 160|231|281 ) ( 207|224|305 ) ( 175|288|337 ) ( 135|352|377 ) ( 136|273|305 ) ( 204|253|325 ) ( 225|272|353 ) ( 189|340|389 ) ( 180|299|349 ) ( 252|275|373 ) ( 152|345|377 ) ( 228|325|397 )
Un esempio dell'uso delle triple pitagoriche è il cavo a dodici nodi con cui un triangolo rettangolo con lati 3, 4 e 5.